Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 17(7): 1940-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16769746

RESUMO

Most humans with microscopic polyarteritis and anti-myeloperoxidase (anti-MPO), anti-neutrophil cytoplasmic antibodies (ANCA) develop "pauci-immune" crescentic glomerulonephritis. For dissection of the roles of ANCA and cell-mediated effectors in microscopic polyarteritis, experimental autoimmune anti-MPO glomerulonephritis was induced by immunizing C57BL/6 mice with human MPO. Autoimmunity to mouse MPO (ANCA and CD4+ cell reactivity) was induced. Challenge with anti-glomerular basement membrane globulin resulted in accumulation of neutrophils, CD4+ cells and macrophages, and significant numbers of crescentic glomeruli compared with similarly challenged control-immunized mice. MPO-deficient (Mpo(-/-)) mice immunized with MPO developed similar immune responses to MPO but failed to recruit effector cells to glomeruli or develop significant crescent formation, suggesting that MPO is acting as a planted glomerular autoantigen. Effector CD4+ cell depletion in this model attenuated crescentic glomerulonephritis and effector cell influx without altering ANCA titers. However, B cell-deficient mice, with no ANCA, still developed severe crescentic glomerulonephritis with accumulation of effector cells. Intravital microscopy studies demonstrated that passive transfer of sera from MPO-immunized Mpo(-/-) mice to LPS-primed mice rapidly induced glomerular neutrophil accumulation and release of MPO. These studies provide in vivo evidence in a relevant vascular bed for both humoral and cellular anti-MPO responses as key inducers of injury. ANCA induces glomerular neutrophil infiltration and MPO deposition. Subsequently, anti-MPO CD4+ cells recognize MPO as a planted glomerular antigen and act with macrophages to amplify severe glomerular injury.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/fisiologia , Glomerulonefrite/imunologia , Neutrófilos/fisiologia , Peroxidase/imunologia , Animais , Autoimunidade , Linfócitos T CD4-Positivos/fisiologia , Glomerulonefrite/enzimologia , Glomerulonefrite/patologia , Rim/imunologia , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo
2.
J Immunol ; 173(1): 136-44, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15210767

RESUMO

Crescentic glomerulonephritis (GN) results from IL-12-driven Th1-directed cell-mediated responses (akin to delayed-type hypersensitivity (DTH)) directed against glomerular Ags. CD40-CD154 interactions are critical for IL-12 production and Th1 polarization of immune responses. Crescentic anti-glomerular basement membrane GN was induced in C57BL/6 (wild-type (WT)) mice (sensitized to sheep globulin) by planting this Ag (as sheep anti-mouse glomerular basement membrane globulin) in their glomeruli. Crescentic GN did not develop in CD40(-/-) mice due to significantly reduced nephritogenic Th1 responses. IL-12 was administered to CD40(-/-) mice with GN to dissect interactions between IL-12 and CD40 in inducing nephritogenic immunity and injury. Administration of IL-12 to CD40(-/-) mice restored Th cell IFN-gamma production, and up-regulated intrarenal chemokines and glomerular T cell and macrophage accumulation compared with WT control mice. Despite this, renal macrophages were not activated and renal injury and dermal DTH were not restored. Thus, CD40-directed IL-12 drives Th1 generation and effector cell recruitment but CD40 is required for activation. To test this hypothesis, activated OT-II OVA-specific CD4(+) cells and OVA(323-339)-loaded nonresponsive APCs were transferred into footpads of WT, CD40(-/-), and macrophage-depleted WT mice. WT mice developed significant DTH compared with CD40(-/-) and macrophage-depleted WT mice. This study demonstrated that CD40-induced IL-12 is required for generation of systemic Th1 immunity to nephritogenic Ags, and that IL-12 enhances Th1 effector cell recruitment to peripheral sites of Ag presentation via generation of local chemokines. Effector cell activation, renal DTH-like injury, and dermal DTH require direct Th1 CD154/macrophage CD40 interactions.


Assuntos
Antígenos CD40/fisiologia , Ligante de CD40/fisiologia , Glomerulonefrite/etiologia , Hipersensibilidade Tardia/etiologia , Interleucina-12/farmacologia , Animais , Células Apresentadoras de Antígenos/fisiologia , Quimiocinas/genética , Interferon gama/biossíntese , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
3.
J Am Soc Nephrol ; 14(11): 2813-22, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14569091

RESUMO

Evidence suggests that human and experimental crescentic GN results from Th1-predominant immunity to glomerular antigens. CD40/CD154 signaling plays a key role in initiating Th1 responses and may direct Th1 effector responses. The role of CD40 in the development of GN was assessed in murine experimental anti-glomerular basement membrane GN. In this model, C57BL/6 wild-type (WT) mice sensitized to sheep globulin develop crescentic GN resulting from Th1 effector responses when challenged with sheep globulin planted in glomeruli. CD40-/- mice do not develop immunity in response to sheep globulin and thus fail to develop effector responses or significant GN. CD40 is expressed in nephritic glomeruli, suggesting a potential role for intrarenal CD40-CD154 interactions in injurious effector responses. Immune neutralization of the CD40 ligand (CD154) at the time of challenge significantly reduced accumulation of Th1 effectors and injury. The role of CD40 expression by renal cells was assessed by comparing GN in WT-->CD40-/- chimeras (absent renal but intact bone marrow CD40) and sham chimeric mice (WT-->WT). Both groups developed strong antigen-specific immune responses (antibody and IFN-gamma production). However, WT-->CD40-/- chimeras demonstrated reduced renal monocyte chemotactic protein 1 and IFN-inducible protein 10 mRNA levels and minimal T cell and macrophage influx and were protected from renal injury. Sham chimeric mice developed reduced GFR, with prominent renal expression of monocyte chemotactic protein 1 and IFN-inducible protein 10 mRNA and effector cell accumulation. In conclusion, the expression of CD40 by nonimmune renal cells plays a major role in Th1 effector responses by inducing Th1 chemokine production. Therefore, CD40-CD154 interactions are a potential therapeutic target in GN.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Doença Antimembrana Basal Glomerular/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Glomérulos Renais/metabolismo , Células Th1/imunologia , Animais , Antígenos CD40/genética , Ligante de CD40/genética , Quimera , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...